i

Revista de Arquitectura accepted for inclusion in SciELO Chile collection

 

Call for papers 2026 Revista de Arquitectura  N.º 50. + N.º 51

 

Call for papers Revista de Arquitectura N.°50

 

ARCHITECTURE AND INVESTIGATION + FREE THEME

50th Issue | 35th Anniversary

Deadline for paper submissions: March 2, 2026

https://dearquitectura.uchile.cl/index.php/RA/announcement/view/396

 

No. 51. CONTEMPORARY ARCHITECTURES AND URBAN PROJECTS:
New Themes and Dimensions of the City + FREE THEME.

Deadline for paper submissions:  June 22, 2026

https://dearquitectura.uchile.cl/index.php/RA/announcement/view/397

 

Static thermal comfort in arid climates: effects on energy consumption in an office building

Authors

Download

Abstract

Artificial conditioning in office buildings, when applied uniformly, can create a disconnect between indoor conditions and the outdoor environment, with negative implications for both energy efficiency and occupants’ comfort perception. This phenomenon is evident in spaces with centralized systems, where indoor temperatures remain nearly constant year-round, limiting users’ ability to adapt seasonally. This study evaluates the indoor thermal behavior and comfort perception in an office building located in a warm-temperate climate region, characterized by centralized conditioning and limited occupant environmental control. The methodology combines seasonal temperature measurements with subjective surveys on thermal sensation, preferences, and perceived performance. Results show minimal thermal variability, with constant
indoor temperatures between 24 and 25°C, contradicting the adaptive assumptions of the ISO 7730 standard. Although users reported being “comfortable” or “slightly warm,” the findings suggest a stable yet energy-inefficient indoor environment that restricts natural adaptive capacity and raises questions about the sustainability of this comfort model in arid and semi-arid climates.

Keywords:

Static confort , thermal stability , thermal variability

References

Ahn, J. (2021). Thermal Control Processes by Deterministic and Network-Based Models for Energy Use and Control Accuracy in a Building Space. Processes, 9, 385. https://doi.org/10.3390/PR9020385

Barone, G., Buonomano, A., Forzano, C., Giuzio, G. F., Palombo, A., & Russo, G. (2023). A new thermal comfort model based on physiological parameters for the smart design and control of energy-efficient HVAC systems. Renewable & Sustainable Energy Reviews, 173, 113015. https://doi.org/10.1016/j.rser.2022.113015

Olsen, A. A. (2024). Indoor Climate.

Beck, H. E., McVicar, T. R., Vergopolan, N., Berg, A., Lutsko, N. J., Dufour, A., Zhenzhong, Z., Jiang, X., van Dijk, A.I. & Miralles, D. G. (2023). High-resolution (1 km) Köppen-Geiger maps for 1901–2099 based on constrained CMIP6 projections. Scientific data, 10(1), 724. https://doi.org/10.1038/s41597-023-02549-6

Bienvenido-Huertas, D., & Rubio-Bellido, C. (2021). Adaptive Thermal Comfort Models for Buildings. En Adaptive Thermal Comfort of Indoor Environment for Residential Buildings (pp. 13–33). Springer. https://doi.org/10.1007/978-981-16-0906-0_2

Drakou, A., Sofos, F., Karakasidis, T. E., & Tsangrassoulis, A. (2023). Adaptive thermal comfort model and active occupant behaviour in a mixed-mode apartment. A synergy to sustainability. IOP Conference Series, 1196(1), 012097. https://doi.org/10.1088/1755-1315/1196/1/012097

Fanger, P. O. (1988). Fundamentals of thermal comfort. En Advances in Solar Energy Technology. Proceedings of the Biennial Congress of the International Solar Energy Society, Hamburg, Federal Republic of Germany (pp. 3056-3061).

Pergamon. https://doi.org/10.1016/B978-0-08-034315-0.50562-0

Hellwig, R. T., Teli, D., & Boerstra, A. A. (2020). The potential of the adaptive thermal comfort concept in long-term actively conditioned buildings for improved energy performance and user wellbeing. IOP Conference Series: Earth

and Environmental Science, 588(3), 032069. https://doi.org/10.1088/1755-1315/588/3/032069

Ijaz, A., Muhammad, A., Hassan Haes, A., & Muhammad Asyraf Mohd, K. (2024). A review on enhancing energy efficiency and adaptability through system integration for smart buildings. Journal of Building Engineering, 89, 109354 https://doi.org/10.1016/j.jobe.2024.109354

International WELL Building Institute. (2020). WELL Building Standard v2 (WELL Standard v2). International WELL Building Institute. https://standard.wellcertified.com

Instituto Argentino de Normalización y Certificación. (2012). Eficiencia energética en edificios. Clasificación de edificios según su grado de eficiencia energética (Norma IRAM 11603). IRAM.

International Organization for Standardization. (1998). Ergonomics of the thermal environment — Instruments for measuring physical quantities (ISO 7726). ISO.

International Organization for Standardization. (2005a). Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria (ISO 7730). ISO.

International Organization for Standardization. (2005b). Testing and calibration laboratories (ISO/IEC 17025). ISO.

Lamberti, G. (2021, septiembre 07-10). Critical overview of heat balance, adaptive, local discomfort models to predict

thermal comfort in buildings [Sesión de conferencia]. International Conference on Environment and Electrical Engineering, Bari, Italia. https://doi.org/10.1109/EEEIC/ICPSEUROPE51590.2021.9584714

Lamsal, P. R., Bajracharya, S. B., & Rijal, H. B. (2023). Adaptive thermal comfort for energy saving office building design- A literature review. E3S Web of Conferences, 396, 01083. https://doi.org/10.1051/e3sconf/202339601083

Luther, M., & Ahmed, T. M. F. (2020). Revisiting the Comfort Parameters of ISO 7730: Measurement and Simulation. En Proceedings of Building Simulation 2019: 16th Conference of IBPSA (pp. 4267-4273). https://doi.org/10.268

/25222708.2019.210983

Olsen, A. A. (2024). Indoor Climate. En A. A. Olsen (Ed.), Applying Physical Ergonomics to Modern Ship Design (pp. 385-394). https://doi.org/10.1007/978-3-031-57974-5_34.

Papadopoulos, P. M., Kyprianou, I., Shahid, M. S., Erba, S., Wurtz, F., Delinchant, B., Riederer, P., & Carlucci, S. (2023). Indoor thermal comfort analysis for developing energy-saving strategies in buildings. International Conference on Future Energy Systems, 1–6. https://doi.org/10.1109/FES57669.2023.10183297

Sánchez-García, D., Rubio-Bellido, C., Tristancho, M., & Marrero, M. (2020). A comparative study on energy demand through the adaptive thermal comfort approach considering climate change in office buildings of Spain. Building Simulation, 13(1), 51-63. https://doi.org/10.1007/S12273-019-0560-2

Thapa, S., & Pernigotto, G. (2025). Adaptive Thermal Comfort in the Different Buildings of Temperate Climates Comparison Between High-Latitude Europe and Mountainous Himalayas in India. Sustainability, 17(2), 404.

https://doi.org/10.3390/su17020404

Yang, L., Wang, F., Zhao, S., Gao, S., Yan, H., Sun, Z., Lian, Z., Lin, D., Zhang, Y., Zhou, X., Cao, B., Wang, Z., & Zhai, Y. (2024). Comparative analysis of indoor thermal environment characteristics and occupants’ adaptability:

Insights from ASHRAE RP-884 and the Chinese thermal comfort database. Energy and Buildings, 309, 114033. https://doi.org/10.1016/j.enbuild.2024.114033

Yang, L., Wang, F., Zhao, S., Gao, S., Yan, H., Sun, Z., Lian, Z., Lin, D., Zhang, Y., Zhou, X., Cao, B., Wang, Z., & Zhai, Y. (2023). Comparative Analysis of Indoor Thermal Environment Characteristics and Occupants’ Adaptability:

Insights from Ashrae Rp-884 and the Chinese Thermal Comfort Database. https://doi.org/10.2139/ssrn.4620400

Zhang, J., Ma, L., & Zhao, T. (2011). Progress of Building Environment Thermal Comfort. Building Thermal Energy Ventilation and Air Conditioning, 30(1). https://doi.org/10.3969/j.issn.1003-0344.2011.01.001

Zhao, D., Watari, D., Ozawa, Y., Taniguchi, I., Suzuki, T., Shimoda, Y., & Onoye, T. (2023). Data-driven online energy management framework for HVAC systems: An experimental study. Applied Energy, 352, 121921. https://doi.org/10.1016/j.apenergy.2023.121921